First U.S. nuclear reactor built from scratch in decades enters commercial operation in Georgia::ATLANTA — A new reactor at a nuclear power plant in Georgia has entered commercial operation, becoming the first new American reactor built from scratch in decades.

  • Giddy@aussie.zone
    link
    fedilink
    English
    arrow-up
    65
    arrow-down
    35
    ·
    11 months ago

    14 years and 35 billion (combined with #4 which has not been finished) and didn’t generate a single kWh in anger until now. Put the same investment into renewables and it would generate similar or greater energy and would start doing so within a year.

    The argument against nuclear now is not about safety. It is about money. Nuclear simply cannot compete without massive subsidies.

    • Problem-based person@lemmy.world
      link
      fedilink
      English
      arrow-up
      40
      arrow-down
      7
      ·
      11 months ago

      Renewables and nuclear are in the same team. It’s true that nuclear requires a greater investment of money and time but the returns are greater than renewables. I recommend checking this video about the economics of nuclear energy.

      • paintbucketholder@lemmy.world
        link
        fedilink
        English
        arrow-up
        25
        arrow-down
        4
        ·
        11 months ago

        That video completely ignores decommissioning costs for nuclear power plants and long-term nuclear waste storage costs in its calculation. Only in the levelized cost of electricity comparison does it show that nuclear is by far the most expensive way of generating electricity, and that it simply can’t compete with renewables on cost.

        People love to look at nuclear power plants that are up and running and calculate electricity generation costs based just on operating costs - while ignoring construction costs, decommissioning costs, and waste disposal costs.

        • icydefiance@lemmy.world
          link
          fedilink
          English
          arrow-up
          9
          arrow-down
          7
          ·
          11 months ago

          The cost of storing nuclear waste for a running plant is only a few hundred thousand a year; basically just just salary for a few people to transport it to a big hole in the ground.

          Decommissioning costs a few hundred million, which sounds like a lot, but for a project that lasts for decades it’s basically nothing.

            • grue@lemmy.world
              link
              fedilink
              English
              arrow-up
              3
              ·
              11 months ago

              Or even less if we – gasp, shock, horror! – reprocessed it.

              (We don’t do that because of overblown fears about nuclear weapons proliferation.)

            • sin_free_for_00_days@sopuli.xyz
              link
              fedilink
              English
              arrow-up
              3
              arrow-down
              4
              ·
              edit-2
              11 months ago

              The Department estimates that continued operation of the current fleet of nuclear power reactors could ~70,000 metric tons of uranium * increase the total inventory of spent fuel from 70,000 metric tons of uranium to 140,000 metric tons of uranium. Nearly all of this spent fuel is being stored at the reactor sites where it was generated, either submerged in pools of water (wet storage) or in shielded casks (dry storage). The Dept of Energy

              Those must be some big fucking trucks. And as far as I know, only Finland has actually developed any long-term storage which could be considered safe.

              Nuclear is fine, but nuclear fanboi takes are similar to weed fanbois, it’s not a perfect solution.

              • I am become Noodle@lemmy.dbzer0.com
                link
                fedilink
                English
                arrow-up
                2
                arrow-down
                2
                ·
                11 months ago

                You seem to think a big number means a big pile of green goo. But actually

                All of the used fuel ever produced by the commercial nuclear industry since the late 1950s would cover a whole football field to a height of approximately 10 yards.

          • tony@lemmy.hoyle.me.uk
            link
            fedilink
            English
            arrow-up
            9
            arrow-down
            6
            ·
            edit-2
            11 months ago

            Estimated total cost of decommissioning in the UK is £120bn. But it’s going to take 100 years to do it… so yay lots of rotting radioactive buildings for the next century.

            The nuclear waste storage facility cost 53bn to build, let alone run… so way off your ‘few hundred thousand a year’.

            • icydefiance@lemmy.world
              link
              fedilink
              English
              arrow-up
              3
              arrow-down
              3
              ·
              11 months ago

              Estimated total cost of decommissioning in the UK is £120bn.

              That’s for way more than just one plant, and there’s a lot more going on that resulted in such a high price tag. That isn’t normal.

              The nuclear waste storage facility cost 53bn to build, let alone run

              It’s a reinforced hole in the ground, designed to last a long, long time after humans forget it exists. Of course it cost money to build, but now it’s just there. It doesn’t cost anything for it to continue to exist. Maybe there’s a little security or staff for some purpose, but I don’t know what they would even do.

        • Oderus@lemmy.world
          link
          fedilink
          English
          arrow-up
          13
          arrow-down
          12
          ·
          11 months ago

          Does that video talk about how wind turbine blades aren’t recyclable at all so they end up in landfills? Solar panels are 75% recyclable which is excellent but that still means 25% is going into the ground. Nuclear is the only way forward.

    • GBU_28@lemm.ee
      link
      fedilink
      English
      arrow-up
      31
      arrow-down
      2
      ·
      11 months ago

      Renewables and nuclear play different sports.

      Renewables are better for most of our needs but there is a backbone need of base power. Nuclear is an expensive but clean way to provide that.

      • AgentOrange@lemm.ee
        link
        fedilink
        English
        arrow-up
        12
        arrow-down
        5
        ·
        11 months ago

        By my very very very rough calculations, you could build a large scale solar farm with 3x power output and have enough money left over to build a 33GWh battery. That would more than cover a continuous supply of 1GW.

        • GBU_28@lemm.ee
          link
          fedilink
          English
          arrow-up
          13
          arrow-down
          1
          ·
          11 months ago

          Absolutely, and we should. We should have both. Nuclear has a very long lifespan and very consistent power. Ideal battery setups do to buy long term lithium battery storage is less of a thing, but it’s growing. There are some other battery techs that use other chemistries which are also attractive.

          Multiple eggs in multiple baskets.

          • Kyrrrr11@lib.lgbt
            link
            fedilink
            English
            arrow-up
            2
            ·
            11 months ago

            Not the guy you responded to but I totally agree. Plus I think countries like Canada, with lots of snow and less direct sunlight, would appreciate an energy source they can rely on in the winter

        • homesnatch@lemmy.one
          link
          fedilink
          English
          arrow-up
          6
          arrow-down
          1
          ·
          11 months ago

          Unless there are a few cloudy days in a row… My panels produce a lot less than normal during cloudy days.

        • UnPassive@lemmy.world
          link
          fedilink
          English
          arrow-up
          6
          arrow-down
          2
          ·
          11 months ago

          Remember that blanketing the world with solar panels isn’t exactly great for the environment. Rooftops makes a lot of sense, but the cost goes way up, an maintenance becomes a nightmare. The footprint of nuclear is much smaller

          • ephemeral_gibbon@aussie.zone
            link
            fedilink
            English
            arrow-up
            4
            arrow-down
            1
            ·
            11 months ago

            The footprint of solar is significant, but still nothing compared to agriculture. E.g. The area used to grow corn to make ethanol in the US is ~ 3x what you’d need to fully power the US on solar.

            ~96000000 acres used for corn, ~40% of that is used for ethanol. That makes 38.3e6 acres. First estimate I found for area of solar panels to fully power the US on solar alone was 14.08e6. That makes corn for ethanol 2.7 times the area of solar panels if all that was used was solar.

            • UnPassive@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              11 months ago

              Yeah agriculture isn’t great for the environment either, but that doesn’t actually make solar any better

        • kameecoding@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          ·
          11 months ago

          or we could do both

          Also I would like to see the enviromental impact of building your 33GWh battery.

    • Waryle@lemmy.world
      link
      fedilink
      English
      arrow-up
      29
      arrow-down
      5
      ·
      11 months ago

      France was able to output 2 reactors per year at 1,5 billion of euros per 1000MW for more than 2 decades during the 70’s to 90’s. The whole French nuclear industry has cost around 130-150 billions between 1960 and 2010, including researches, build and maintenance of France’s whole nuclear fleet.

      A 1000MW reactor, at current French electricity price and for a 80% capacity factor, generates 1,4 billion of euros worth of electricity per year, for a minimum of 60 years.

      Nuclear is not costly, and can absolutely compete by itself, if you don’t sabotage it and plan it right.

      • schroedingershat@lemmy.world
        cake
        link
        fedilink
        English
        arrow-up
        4
        ·
        11 months ago

        Except those reactors are off 30-50% of the time due to shoddy construction, €1.5/W in 2023 money is pure fiction, and overnight costs with free capital aren’t real costs once you adjust for inflation and stop cherry picking the first reactors before negative learning rates kicked in.

      • cryball@sopuli.xyz
        link
        fedilink
        English
        arrow-up
        1
        ·
        11 months ago

        I would be very interested to know why the trend has moved away from building reactors in time and within a reasonable budget. It seems that most projects after the turn of the millennium haven’t been cost effective.

        Why did we manage to build reactors well before but not now?

    • PetDinosaurs@lemmy.world
      link
      fedilink
      English
      arrow-up
      19
      arrow-down
      3
      ·
      11 months ago

      Base load my friend. We also need steady, reliable, clean power when it’s dark and calm. Until we can accomplish seasonal grid storage of renewables, this is the less expensive option.

      • Giddy@aussie.zone
        link
        fedilink
        English
        arrow-up
        17
        arrow-down
        11
        ·
        11 months ago

        There are plenty of firming options (battery, pumped hydro, flywheels etc) which deliver reliability for a fraction of the price of this boondoggle. Not to mention a diverse portfolio of renewable technologies spread over a large geographical area is actually quite stable. When the sun isn’t shining in one area, the wind may be blowing or the sun shining in another area.

        • kameecoding@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          arrow-down
          1
          ·
          11 months ago
          • pumped hydro -> not exactly something that can be built anywhere and also not very cheap
          • battery -> huge environmental impact until we can get something like sodium based batteries
          • Flywheels, not exactly something that gets you through the night is it.
        • PetDinosaurs@lemmy.world
          link
          fedilink
          English
          arrow-up
          9
          arrow-down
          11
          ·
          11 months ago

          Those can only hold enough power for minutes or hours.

          We need to be able to store power from the summer until the winter. Months. We need to store energy from when the sun is shining in July until it’s not in December.

          The only possible way to do that now is to store it as hydrogen or hydrocarbons. That infrastructure is currently very lossy, expensive, and only hypothetical.

          • Spaceballstheusername@lemmy.world
            link
            fedilink
            English
            arrow-up
            10
            arrow-down
            6
            ·
            11 months ago

            This idea they can only hold for minutes or hours is simply not true not to mention the entire premise is false. Only the cloudiest of days the solar panels produce 20% what they do on the sunniest days that means you only need to build out 5 times the expected output to always be able to produce what you need during sunny hourse. That means you only need to have battery backup for 16 hours. Something that’s completely feasible. The idea batteries can’t hold power for months isn’t true it’s that it’s not currently economical. How long do you think your electronics take to get from the plant to the store till you buy it and turn it on. If we’re talking about cost then let’s look at this plant. 1.1GW nuclear reactor costs 35 billion and 15 years. A solar farm built out to 5 times capacity would cost roughly 6 billion. Now triple that for battery costs if you want 24/7 electricity were on the order of 18 billion. That’s nearly half the cost and this is being very conservative assuming you want this to be a baseload supplier but will output way more most of the time. Now you will have nearly free electricity during most of the year that other industries could take advantage of like aluminum processing or something like that.

            • PetDinosaurs@lemmy.world
              link
              fedilink
              English
              arrow-up
              3
              arrow-down
              1
              ·
              11 months ago

              You are simply incorrect. I don’t know why you think that there are any actual technologies that can store terawatt hours of electricity for months at a time. You can’t pump storage the entirety of lake Mead. You can’t have flywheels that have such low friction at such high mass and speed. And the batteries…you can’t be serious.

              You are also under the incredible misapprehension that the market is going to build excess capacity such that they will need to give away “nearly free” electricity. The need to be able to store it to sell when the price is better or be funded for some kind of (as yet hypothetical) carbon sequestration project.

            • 5BC2E7@lemmy.world
              link
              fedilink
              English
              arrow-up
              2
              arrow-down
              1
              ·
              11 months ago

              Being generous with a 16h battery you already spend half overnight. What would happen in your scenario if it’s cloudy for longer than 8 hours? If it wouldn’t even last for a day it’s not a realistic plan that accounts for normal weather

          • Thadrax@lemmy.world
            link
            fedilink
            English
            arrow-up
            5
            arrow-down
            3
            ·
            11 months ago

            You don’t need power storage for months, if you combine different renewable sources and have power lines connecting different areas. Wind and solar complement each other usually.

            You need to be able to bridge a few weeks though, because there will be gaps, but you don’t need to store solar power for half a year to make it. It is still a big issue, but no need to exaggerate.

    • tara@lemmy.world
      link
      fedilink
      English
      arrow-up
      12
      ·
      11 months ago

      There’s also a reliability element too. Nuclear can reliably output a given amount of energy, at the cost of being slow to alter. Many renewable sources have sporadic amounts of power throughout each day. Either is better than fossil fuels at least.

      • Giddy@aussie.zone
        link
        fedilink
        English
        arrow-up
        6
        ·
        11 months ago

        Good point but that is not insurmountable. There are many ways to achieve predictability (batteries, hydro, tidal) that also come on stream much quicker than any nuclear plant.

        • tara@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          ·
          11 months ago

          Ah I’d not consider these! That gives some hope too then :) I hope we get the battery advances we need asap, the urgency from the climate crisis is strong lately.

      • gmtom@lemmy.world
        link
        fedilink
        English
        arrow-up
        8
        arrow-down
        7
        ·
        11 months ago

        Nuclear isn’t entirely reliable though. During the big heatwave last year at least 1 and iirc at leat a few French reactors had to be shut down because the water levels in the rivers they were on were not high enough to get sufficient water to cool them. Which is a problem that’s only going to get worse as climate change progresses.

        • relic_@lemm.ee
          link
          fedilink
          English
          arrow-up
          7
          ·
          edit-2
          11 months ago

          That’s a limitation of the secondary power conversion side and is true for any power generation methodology that relies on steam generation. That said, there’s alternatives to the traditional Rankine cycle that could be deployed without modifying the nuclear side of the plant.

    • BastingChemina@slrpnk.net
      link
      fedilink
      English
      arrow-up
      11
      arrow-down
      8
      ·
      11 months ago

      The issue is that right now renewables energy don’t reduce CO2 emissions by much. (Except for hydro)

      Sure if we look at the energy produced it’s very clean. The issue is intermittence. As a society we decided to continue using electrical equipment even when the sun is not shining and the wind is not blowing. So we use fossil fuel to compensate and overall the electricity production still enjoy a lot of CO2. We could use batteries, but utility scale battery are not very developed yet.

      Same issue with the price. Sure solar energy is very cheap, when it’s sunny. But what if I want to turn on the light at night ? The solar panel are not producing, the wind is not blowing, price is irrelevant if I can’t get power when I need it.

      Nuclear can produce a reliable amount of energy all the time.

      I hope we will see the development of utility scale energy storage because this is what we really need for the development of renewable energy.

      • LouNeko@lemmy.world
        link
        fedilink
        English
        arrow-up
        12
        arrow-down
        3
        ·
        11 months ago

        We don’t necessarily have to use batteries. In mountainous regions we already have stations that use surplus power to pump water up a mountain and then drop it down to generate energy when needed. Its basically a potential energy battery. But this is usually location limited and more expensive to set up.

        • BastingChemina@slrpnk.net
          link
          fedilink
          English
          arrow-up
          7
          ·
          11 months ago

          Yes, Pump Storage Hydroelectricity is a great option for storage. It’s not the most efficient but it allows to store massive amount of energy.

          I think today it’s the main utility scale storage solution in the world.

        • charles@lemmy.world
          link
          fedilink
          English
          arrow-up
          4
          arrow-down
          12
          ·
          11 months ago

          You’re describing dams, and basically all the good locations are taken already.

            • AgentOrange@lemm.ee
              link
              fedilink
              English
              arrow-up
              5
              arrow-down
              1
              ·
              11 months ago

              Tbf that would be two dams and they did use the plural of dams, technically ‘dams’ could be a pumped storage facility.

              • grue@lemmy.world
                link
                fedilink
                English
                arrow-up
                4
                ·
                11 months ago

                To be even fairer, his central point that “all the good locations are taken already” only applies specifically to the regular type of dams that don’t use pumped storage. For traditional hydroelectricity you need an easily-dammed-off hilly basin containing a large/high hydraulic head river, but for pumped-storage you just need the hilly basin.

                • SwampYankee@mander.xyz
                  link
                  fedilink
                  English
                  arrow-up
                  3
                  ·
                  11 months ago

                  To be even fairerer, the body of water that gets pumped doesn’t need to be dammed; if you have a steady enough river, you can suck the water right out of the side of it. Also, the basin isn’t a prerequisite, you could build holding tanks at the top of a hill.

                  Hell, you could enclose the whole thing to control evaporation and use the same water over and over, no natural body of water necessary. Better yet, use a denser fluid to achieve the same result in a smaller space. You could probably fit the whole thing in a single building.

      • paintbucketholder@lemmy.world
        link
        fedilink
        English
        arrow-up
        8
        arrow-down
        5
        ·
        11 months ago

        The issue is intermittence. As a society we decided to continue using electrical equipment even when the sun is not shining and the wind is not blowing.

        And a lot of that can simply be solved with a larger grid.

        Yes, in a small geographic area, you might run into a situation where the sun isn’t shining and the wind isn’t blowing. On the other hand, on a global scale, the sun is always shining and the wind is always blowing.

        A realistic solution right now are therefore continent-wide grids that combine hydro, solar, wind and pumped hydro storage.

    • SpookySnek@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      1
      ·
      11 months ago

      Copied my comment above, sorry for the double wall of text:

      Let’s play around with the thought of powering all of America with renewables. America’s coal, gas, petroleum and nuclear plants generate a combined baseload power of 405 GWavg, or “gigawatts average.” (Remember, a gigawatt is a thousand megawatts.) Let’s replace all of them with a 50 / 50 mix of onshore wind and CSP (solar), and since our energy needs are constantly growing, let’s round up the total to 500 GWs, which is likely what we’ll need by the time we finish. Some folks say that we should level off or reduce our consumption by conserving and using more efficient devices, which is true in principle. But in practice, human nature is such that whatever energy we save, we just gobble up with more gadgets. So we’d better figure on 500 GWs.

      To generate this much energy with 1,000 of our 500 MW renewables farms, we’ll put 500 wind farms in the Midwest (and hope the wind patterns don’t change…) and we’ll put 500 CSP farms in the southwest deserts—all of it on free federal land and hooked into the grid. Aside from whatever branch transmission lines we’ll need (which will be chump change), here’s the lowdown:

      Powering the U.S. with 500 wind and 500 CSP farms, at 500 MWavg apiece.

      Steel ………………..  503 Million tonnes (5.6 times annual U.S. production)
      Concrete …………..  1.57 Billion t (3.2 times annual U.S. production)
      CO2 ………………….  3.3 Billion t (all U.S. passenger cars  for 2.5 years)
      Land …………………  91,000 km2 (302 km / side)
      

      35,135 sq. miles (169 mi / side)

      (the size of Indiana)

      60-year cost ……… $29.25 Trillion

      That’s 29 times the 2014 discretionary federal budget.

      If we can convince the wind lobby that they’re outclassed by CSP, we could do the entire project for a lot less, and put the whole enchilada in the desert:

      Powering the U.S. with 1,000 CSP farms, producing 500 MWavg apiece.

      Steel ……………….   787 Million t (1.6 times annual U.S. production)
      Concrete ………….  2.52 Billion t (5.14 times annual U.S. production)
      CO2 …………………  3.02 Billion t (all U.S. passenger cars for 2.3 years)
      Land ………………..  63,000 km2 (251 km / side)
      

      24,234 sq. miles (105.8 mi / side)

      (the size of West Virginia)

      60-year cost ……. $18.45 Trillion

      #That’s to 18 times the 2014 federal budget.

      Or, we could power the U.S. with 500 AP-1000 reactors.

      Rated at 1,117 MWp, and with a reactor’s typical uptime of 90%, an AP-1000 will deliver 1,005 MWav. Five hundred APs will produce 502.5 GWav, replacing all existing U.S. electrical power plants, including our aging fleet of reactors.

      The AP-1000 uses 5,800 tonnes of steel, 90,000 tonnes of concrete, with a combined carbon karma of 115,000 t of CO2 that can be paid down in less than 5 days. The entire plant requires 0.04km2, a patch of land just 200 meters on a side, next to an ample body of water for cooling. (Remember, it’s a Gen-3+ reactor. Most Gen-4 reactors won’t need external cooling.) Here’s the digits:

      Steel ……….  2.9 Million t (0.5% of W  &  CSP / 0.36% of CSP)
      Concrete …  46.5 Million t (3.3% of W  & CSP / 1.8% of CSP)
      CO2 ………..  59.8 Million tonnes (2% of W & CSP / 1.5% of CSP)
      Land ……….  20.8 km2 (4.56 km / side) (0.028% W & CSP / 0.07% of CSP)
      

      1.95 sq. miles (1.39 miles / side)

      (1.5 times the size of Central Park)

      60-year cost ……… $2.94 Trillion

      #That’s 2.9 times the 2014 federal budget.

      Small Modular Reactors may cost a quarter or half again as much, but the buy-in is significantly less, the build-out is much faster (picture jetliners rolling off the assembly line), the resources and CO2 are just as minuscule, and they can be more widely distributed, ensuring the resiliency of the grid with multiple nodes.

      And this is without even mentioning MSRs.

      Was this project a complete shitshow of sheldon before seen-proportions?

      Yes.

      Does this mean that we should make the move towards powering the US from 100% renewables instead?

      Well if you hate math and logic enough to even consider it, sure. Go ahead.

    • Wanderer@lemm.ee
      link
      fedilink
      English
      arrow-up
      1
      ·
      11 months ago

      Yea you’re right.

      People make stupid arguments about base load (nuclear doesn’t match supply demand so it’s meaningless argument) or renewables only being built out for maximum output = highest demand (in reality you need to build minimum output as a function of highest demand. Highest total power will far exceed highest demand and still be cheaper than fossil or nuclear. But people can’t grasp that).

      Finally. Huge interconnectors like what China and Europe are doing/ done never come up.

      It’s just the same old. We built 10% of renewables we need yet we are still using gas. Proof renewables don’t work!

    • Hazdaz@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      arrow-down
      5
      ·
      11 months ago

      it would generate similar or greater energy and would start doing so within a year.

      That’s not really accurate. There are endless lawsuits when it comes to getting windfarms going because people claim it will ruin their view or the rare redheaded blue-eyed pigeon will be hurt or some other bogus nonsense. These lawsuits can go on and on for ages.

    • dezmd@lemmy.world
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      8
      ·
      edit-2
      11 months ago

      The nuclear lobby kids never seem to accept going renewable over nuclear as a possible reality. They refused to acknowledge it in the online circles of the mid to late 90s on News Groups, early 00s on Slashdot, didn’t want to see it in the 00s on Digg, attacked any questioning nuclear the 10s and early 20s on reddit. It has been a consistent online turf protection war in comment sections for decades.

      Every nuclear post turns into a circle jerk and a handful of people trying to ‘in before renewables’ to make sure to drown out anything that isn’t waving the nuclear flag with little reservation.

      We need both in some respects to maintain current electrical needs, but money and time to deploy is quantifiably much more efficient with renewables in practice vs nuclear on paper. Having a much larger renewable system spread all across the country would be of a greater short and long term benefit. Solar on every home, a small solar cell on every light pole along with low wattage monitoring systems for power distribution optimization, large desert solar installations, agrivoltaic farming (if it’s not just bullshit), wind farms in strategic areas with low impact to birds, etc.

      • Zengen@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        arrow-down
        3
        ·
        11 months ago

        Doing all those things would cost hundreds of times what it costs to build a reactor. There are reactors already engineered and that exist elsewhere in the world capable of powering entire cities for over a hundred years that are easily decomissionable unlike the older 1970s reactors that we have. Also renewables are unable to produce power on demand when load demands spike suddenly. U need fossil fuel for that currently. Not to mention the process of creating solar panels is one of the most environmentally damaging manufacture processes and the only country that possesses the materials to make them is China… Oil receives metric assloads of government subsidy. Why should nuclear not get the same? Nuclear power is the only thing we know of that has rhw ability to fill all of the functions that fossil fuel power plants have.Idf theres actually other options then cool but iv looked at every alternate energy source and rhw big thing that sticks out is a couple things. If the weather gets too cold, or too hot, theres a natural disaster or other condition that necessitates a very sudden and high increase in kilowatt hour demand renewable energy sources buckle. And then your left having to fire coal to meet the energy need.

        • grue@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          ·
          11 months ago

          His username checks out!

          That said, you might share his opinion if you were a Georgia Power ratepayer who’s been paying extra on their power bill for years and years now even though it’s only now just come online (and while the Georgia Public Service Commission has allowed the high profit margins for Georgia Power stockholders to be maintained even despite all the cost overruns).